Easy FAST Sub-Netting -

just remember to draw this table **before** you start the exam.....

Start by listing the 'magic numbers / guzupbys' (how many addresses in each subnet) and their corresponding network masks on the side of your laminated note pad

4 addresses 8 16 32 64 128		/32 / 31 /30 /29 /28 /27 /26 /25 /24	= mask = mask = = = = = =	255.255.255.255 255.255.255.254 IGNORE FOR CCNA 255.255.255.252 255.255.255.248 255.255.255.240 255.255.255.2540 255.255.255.192 255.255.255.128 255.255.255.128
256	=	/24	=	255.255.255. 0

Then, during the exam, at a glace you can see address space increments and how they correspond to the network mask in decimal and slash notation. **REMEMBER to take one address off for the network & one off for the broadcast to see 'usable address count' in all networks >31 bits**

Continue into the third octet ;

512	=	/23	=	255.255. 254 .0	third octet going up in 2
1024	=	/22	=	255.255. 252 .0	third octet going up in 4
2048	=	/21	=	255.255. 248 .0	third octet going up in 8
4096	=	/20	=	255.255. 240. 0	third octet going up in 16
8192	=	/19	=	255.255. 224 .0	third octet going up in 32

ALSO MAY SAVE TIME if you list the network increments ;

4	8	16	32	64	128
8	16	32	64	128	256
12	24	48	96	192	
16	32	64	128	256	
20	40	80	160		
24	48	96	192		
28	64	112	224		
32	72	128	256		
36	80	144			
40	88	160			
44	96	176			
48	104	192			
52	112	208			
56	120	224			
60	128	240			
64	136	256			
68	144				
72	152				
76	160				
80					

It may seem mad - but it does work in the un-real world of the exam. It enables you to speed up your address calculations during those precious exam minutes. There are many questions on network sizing and addressing – every second saved helps in the exam.